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A study of synchrotron radiation near the orbit 
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Received 30 January 1986, in final form 25 June 1986 

Abstract. We study the radiation intensity produced by a monoenergetic electron in circular 
motion as a function of the distance to the orbit. The analysis is carried out along two 
directions, namely in the radial direction, and along the tangent to the orbit. We find that, 
near the orbit, the intensity of radiation in the radial direction differs significantly from 
the value given in Schott’s formula. Together with an increase of the radiation intensity 
as we move closer to the orbit, the angular spread of the radiation decreases. As a result, 
a focusing effect of the radiation in the orbit plane is obtained. In particular, when radiation 
is detected almost touching the electron orbit, all the electron radiation tends to be 
concentrated into a line, giving rise to a very high density of energy per unit area. Except 
for points very close to the tangential point, we show that the intensity of radiation in the 
forward direction is given by Schwinger’s formula, independent of the distance to the 
tangential point. 

1. Introduction 

The radiation emitted along the radial direction by a monoenergetic electron in a 
circular orbit was studied a long time ago by Schott (1912), who arrived at the following 
expression for the spectral distribution of the radiation produced during a period of 
motion: 

dP, e2w4a2n2 [ p2( dJ,( np sin e ) ) 2  -- - 
dR’ 2.nc3p2 d(np sin 6) 

+cot2 u’,( np sin e)  

where a is the orbit radius, w denotes the electron angular frequency, p = a o / c  and 
0 is the usual spherical polar angle in a system of coordinates with the origin at the 
centre of the orbit, which lies in the X Y  plane. On the other hand, the angular and 
spectral distribution of the radiation, for a high energy electron and in the forward 
direction along the tangent to the orbit, was given by Schwinger in a classic paper on 
synchrotron radiation (Schwinger 1949): 

where y stands for the usual relativistic factor y = (1 - u2 /  c’)”’~, CL is the angle between 
the line of observation and its projection on the orbit plane tangent to the orbital ring 
(see figure 1) and 77 = ( n ~ a / 3 c ) ( y - ~ +  1 4 ~ ) ~ ’ ~ .  Experimental studies of synchrotron 
radiation have been carried out mainly in the forward direction and the results agree 
very satisfactorily with those predicted by equation (1.2). There have been numerous 
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X 

Figure 1. Coordinate system related to the measurement of the energy flux in the tangential 
direction The slit is orthogonal to the unit vector ? 

experimental studies of synchrotron radiation (Tomboulian and Hartman 1956, Codling 
and Madden 1965, Haensel and Kunz 1967, Lemke and Labs 1967); a detailed list of 
references can be found in Codling’s paper (Codling 1973). 

The radial intensity of radiation, described by ( l . l ) ,  as well as the one associated 
with the forward direction, given by (1.2), are independent of the distance between 
the detection point and the electron orbit. This distance independence follows from 
some approximations that can be easily justified far from the orbit. However, it is not 
a priori obvious that these approximations continue to hold near the electron orbit, 
because in this case the neglected pieces are difficult to estimate. 

Schott’s formula (1.1) is reproduced in almost any textbook on classical electrody- 
namics (see, for example, Landau and Lifshitz 1975). Its derivation is based on 
approximations that arise when the distance r between the detection point and the 
orbit centre is much larger than the orbit radius a, independent of the electron energy. 
For distances of the same order as the orbit radius the approximations are doubtful 
and, therefore, at such distances the validity of (1.1) is uncertain. The high energy 
form of this equation is formally identical to Schwinger’s equation (1.2), but with the 
angle $ replaced by x = &T - 6’ (Sokolov and Ternov 1968). 

Unlike in the derivation of ( l . l ) ,  the energy of the electron plays an essential role 
in the attainment of (1.2). For a high energy electron the radiation that reaches the 
slit, orthogonal to the tangential direction, is produced by a tiny arc of the electron 
orbit around the tangential point. Using this property, equation (1.2) follows easily 
(Jackson 1962) for distances, measured from the tangential point, that are much larger 
than the length of the tiny arc, which is usually the case in experiments; however this 
procedure can be hardly justified for detection near the tangential point. 

The purpose of this paper is to study the radiation near the orbit, without using 
the abovementioned approximations. In this case the analytical study of the radiation 
is very complicated and for this reason we use this procedure only in the orbit plane. 
Furthermore, we are going - -  to study the total intensity of the radiation, i.e. irrespective 
of frequency. Of course, our main interest is the radiation of a high energy electron. 
The most direct way for investigating the distance dependence of the radiation is by 
means of a power series in the parameter 5 = a /  r. We use here precisely this method, 
which turns out to be convenient and fairly simple for studying the total intensity of 
the radiation in the orbit plane. 
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If S denotes the Poynting vector, T the electron period and r^=  (sin e cos cp, 
sin e sin cp, cos e), the unit vector along the radial direction, then we will write 

t = T  

( S .  r^)= J,=o ( S .  dr 

as a power series in the parameter 6 = a /  r, namely 
a3 

( S . i ) =  1 a n t n  
n = 2  

(1.3) 

(1.4) 

with an analogous representation for the time integrated flux into the tangential 
direction t (see figure 1). 

The analysis of the coefficients of the series representation (1.4) allows us to show 
that, for a high energy electron, the intensity of the radiation in the radial direction 
near the orbit differs strongly from the value given by Schott’s formula. In fact, equation 
(1.1) gives, for the intensity of radiation of a high energy electron in the orbit plane, 
the value 7ezy5/16a, which is independent of the distance to the orbital ring. On the 
other hand, we find that the correct result is (7e2y5/16a)( l - t2)-”2.  In order to 
investigate in more detail this increase in the radiation intensity as we move closer to 
the orbit, we use numerical techniques for the study of the radiation above and below 
the orbital plane. We find that the angular spread of the radiation decreases as we 
approach the electron orbit. This focusing effect becomes remarkable when the radi- 
ation is detected almost touching the electron orbit. In this case all the radiation emitted 
by the electron is focused into a line giving rise to a very high density of energy per 
unit area. 

We also show, using analytical methods, that in the orbit plane the intensity of the 
radiation in the forward direction is given by Schwinger’s formula and is independent 
of the distance to the tangential point. Strictly speaking, we have shown this distance 
independence only when we are not very close to the tangential point. In the tangential 
direction we cannot bring a detector to an arbitrary small distance from the tangential 
point. This difficulty does not exist, at least in principle, for detection along the radial 
direction. 

2. The energy flux in the radial direction 

In this section we are going to present first a simple proof that only the a, term of 
(1.4) gives rise to a global average flux through a spherical surface which encloses the 
region where the electron moves. Let us consider two spherical surfaces Z,. and Z, 
centred at the orbit centre, of radii r’ and r respectively, and such that r ‘ >  r > a. Let 
9 be the volume limited by Z, and Z r , .  Then the following conservation equation is 
satisfied in 9: 

0 - S + a u / a t  = O  (2.1) 

where U = ( E 2 +  B 2 ) / 8 x  is the energy density of the electromagnetic field. From (2.1) 
we obtain 



1390 D Villarroel and V Fuenzalida 

No matter how complicated the electromagnetic field, it is periodic in time, due to the 
periodic nature of the electron movement. In particular, the integral over the volume 
9 in (2.2) defines a periodic function of time. Therefore, if we integrate (2.2) over a 
period T we obtain I=, ( S  - ?) dZ, = I=,, ( S  ?) dZr, . (2.3) 

Introducing here the expansion (1.4) and taking the limit r ’ +  CO we obtain 

f [ f l  a,, dZ, = O  
n = 3  

and because of the arbitrariness of r, it follows that 

lo2= [: a,, sin 6 d e  d p  = 0 for n f 2, 

(2.4) 

(2.5) 

The electromagnetic field for an electron in arbitrary motion is given by (Jackson 
1962) 

B ( x , t ) = n ^ x E  

where 6 is the unit vector that points from the retarded electron position ~ ( t ’ )  to the 
detection point x, v is the electron velocity dzldt’, p = v / c  and R = lx - z (  t’)I denotes 
the distance between the detection point and the retarded electron position. The 
right-hand side of (2.6) must be evaluated at the retarded time t ’ ,  defined implicitly 
by t =  t’+lx-z(t’)l/c, where t is the detection time. Substituting the fields (2.6) into 
the Poynting vector S = (c/47r)E x B and using the circular motion condition p fi  = 0, 
we find that S can be written as 

s = SI +s2 (2.7) 

where 

which is built up from the acceleration parts of the electric and magnetic field, i.e. by 
means of the terms with R - ’  dependence in (2.6). In spite of the fact that the piece 
S2 makes a contribution to the energy flux (1.3), it turns out that, for a high energy 
electron, it is negligible with respect to that of SI. In fact, in this case, following exactly 
the same procedure that we present here for the treatment of SI, it can be shown that 
the coefficients of the power series associated with (S2 - E) are proportional to y 3 ,  in 
contrast with those of ( S ,  t )  which are proportional to 71’. Then, since we are mainly 
interested in high energy electrons, in what follows we shall ignore the contribution 
to the energy flux due to the S2 term of the Poynting vector. Let us remark, however, 
that the property (2.5) remains valid separately for the coefficients of (SI * E) as well 
as for those of (S ,  * E). This happens because SI and S2 satisfy conservation equations 
of the type (2.1) (Teitelboim et a1 1980). In particular, the covariant version of the 
conservation equation associated with SI gives a clear picture of the radiation emitted 
by an electron, allowing a transparent visualisation of Rohrlich’s local radiation 
criterion (Rohrlich 1965). 
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In our system of coordinates, which is centred at the orbit centre, let x = r(sin 8 cos cp, 
sin 0 sin cp, cos e )  be the detection point and z (  t’) = a(cos ut’, sin ut’, 0) be the electron 
position in the X Y  plane, then 

~ = l x - z ( t ‘ ) l = [ r ’ - 2 a r  sin e cos(ut’-cp)+a2]’’2 (2.9) 

and 

K = 1 - n*.  p = 1 + ( r / R ) P  sin 0 sin(ut’- cp) (2.10) 

where p = a u / c .  Instead of working with R it is more convenient to introduce the 
dimensionless quantity p defined by 

p = [ l - 2 5 s i n  0 cos(ut‘-cp)+52]’’2= R/r.  (2.11) 

From equations (2.8)-(2.10) it is easy to obtain the following expression for the radial 
component of the energy flux associated with S , :  

452 3y-’52 y-=t4 454 3y-2t4 y-256 +X3+K6p5 +----- K 6 p 3  K 4 p 3  K 6 p 5  +m) 
K P  

(2.12) 

where K and p are, of course, evaluated at the retarded time t’. By making the standard 
change of variables d t  = K dt’, and using the periodicity of SI - i, we find that the radial 
energy flux during a period of the motion ( S ,  - i )  can be written as 

f ’ =  T 

K S 1  * i dt’ (2.13) 

where the integrand depends only on the time t’. Thus we conclude from (2.12) that 
the calculation of (2.13) is reduced to computing the following integrals: 

1. =o 
( S ,  * i )  = 

(2.14) 

with p = 3, 5 and q = -1, 1, 3, 5. The evaluation of ( S ,  * i )  can be carried out also by 
means of the integrals (2.14) but with p = 3,4,  5 and q = 1, 3, 5. Due to the periodicity 
of the integrands in (2.14), it follows that these integrals are independent of the angle cp. 

We will evaluate the integrals (2.14) by expanding them in a power series on the 
5 parameter. Equation (2.14) can be written as 

(2.15) 

where K = 1 + p  sin e sin x / p  and p = (1 - 25 sin 6 cos x + 5’)”’. Now if we call a y )  
the numbers 

a ( P ) = _ _ _ _  ( - l )k  ( k + p  - l ) !  
k ( p - l ) !  k! (2.16) 

corresponding to the power series expansion of the (1 + x ) - ~  function, then the F‘p-y’ 
function can be written as 

( p  sin e sin x ) ~  dx 
k = O  27r (1 -25 sin e cos ~ + [ ~ ) ( ~ + q ) ’ ~ ’  

(2.17) 
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The mathematical derivation of the above formula (and some others that we will find 
later) can be justified rigorously under the p < 1 and 6 < 1 hypothesis. It is easy to 
see that the integral (2.17) is null if k is odd. Then 

(2.18) 

To calculate these integrals we make use of the following expansion (Gradsteyn and 
Ryzhik 1965): 

oc 

(1-28sin ~ c o s x + ~ ~ ) - ( ~ ~ + ~ ) ' ~ =  1 6mC(,zn+q)'2(sin 8 cos x )  (2.19) 
m = O  

where the C^,( t )  are the Gegenbauer polynomials. Then we may write (2.18) as 
00 m 

F(P.4) = 1 6" 1 ag'(/3 sin e)'"AI",!, 
m=O n = O  

where the A$:!,, are given by 

(2.20) 

(2.21) 

Due to the property C^,( - t )  = (-l)"'C^,(t), the integral (2.21) vanishes if the rn index 
is odd. Thus, only the A$!zm are different from zero. Introducing the B:%¶' functions 
defined by 

(2.22) 

we can write the F'p3q' functions as follows: 
00 

F(P.4) = 1 gZmBP;q). (2.23) 

If we introduce (2.23) in the time integrated energy flux (SI * ;), we get the following 
expansion in terms of the 6 parameter: 

m=O 

e2p3 cE 
(SI * ;) = 7 1 bzm62m 

16a 
(2.24) 

(2.25) 

(2.26) - ~ $ 5 , 1 )  -2~(5,3)]+4[~!3.3) + ~ i 3 ~ l )  - Bb3,3)]. 

Furthermore, in general for m 2 3  the coefficients bzm are given by 

bZm = y-Z[-B::5'+B:23)+ B ~ ~ 1 ' - B : 5 ~ - 1 ) + 3 B $ ~ 5 ~ , - 2 8 z ; _ 2 -  ( 5  3 )  Bz,-2 ( 5  I )  

-3B$k524+ B:';5'i,]+4[B$k3?z+ B$z!z-  B$k314]. (2.27) 

that 
appear in the coefficients bzm can be exactly evaluated in an explicit way for arbitrary 
values of the angle 8, electron energy and index m. Let us consider first the 

The relevant point of our procedure lies in the fact that the functions 
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given by equation (2.21). Gegenbauer's polynomials C:,(t) can be written as 
(Gradsteyn and Ryzhik 1965) 

(-l)"F(-m; m + h ; $ ;  t 2 )  
( A + m ) B ( h ,  m + l )  C i m ( t )  = (2.28) 

or, in a more explicit way, 

where we have used the convention (-l)!! = 1. Introducing this expression in (2.21), 
and with the help of the result 

(2k- l)!! (2n - l)!!  
2"ikT(n + k + 1) 

r lo2= sin'" x cosZk x dx = 
2 T  

(2.30) 

we find 

(-1)"(2n - l)!! ( m)( - l )k r (mCk+n+q/2 )  sinZk e. (2.31) 
T(n + q / 2 ) r ( m  + 1)2" k = O  k T(n+ k +  1) Ai:!2m(e) = 

Since in this paper q 3 -1, equation (2.31) becomes ambiguous only if m = n = q = 0. 
However, in this case it is easy to see that Ah$ = 1. 

The BPhq' functions defined in (2.22) are essentially polynomials in the variable 

x = (1 - @'sin2 (2.32) 

Although the calculation of B&" is direct, it becomes quite wearisome for high values 
of m. As an illustration of the method for evaluating the B$c9', let us consider the 
particular case of Bh5,". From (2.31) it follows that AE)O= (2n - 1)!!/(2n)!!, then 

(2.33) 

Replacing the value for ai;' obtained from (2.16) we obtain 

1 "  ( p  sin e)*" 
4! (2n)!! Bh5,"=- [(2n +7)!!-6(2n +5)!!+3(2n +3)!!] . (2.34) 

These series are related to the X function defined in (2.32) since 

1 .f (2n+2k-1)!!  
~ 2 k + 1 =  ( p  sin e ) 2 n  (2k - l)!! "=o (2n)!! (2.35) 

From this we conclude that Bd5*4' is given by 

Bh5.4' = i(35X9 - 30x7 + 3x7. (2.36) 

The evaluation of any can be carried out following the same steps used in BhSv4'. 
However, in the computation of the coefficients bzm of (2.24) it is not convenient to 
deal with each BPA~' separately, as can be seen from the fact that the B$?' include 
spurious terms of powers higher than y 5  for a high energy electron, as is shown in 
(2.36). Actually, strong simplifications arise if we evaluate together the set of terms 
BiY' that have the same index p in bZm. For example, after some algebra we get the 
following exact expressions for the first three coefficients of (2.24): 

b, = ( 1/p ')[ -5 y-2X7 + 6( 1 + p')X' - ( 1 + 3p2)X3] (2.37) 
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(2.38) 
b4 = ( 1/2p4)[35(2p2 - 3 ) ~ - ~ X ~ + 3 0 ( 8  -7p2  + 2p4)y-2X7 

- 3( 55 - 60p2 + 23p4 - 2p6)X5 + (30 - lop2 + 4p4)X3] 

b6 = ( 1/8p6)[3 15( -5 + 4p2)  y-‘X” + 70( 65 - 73p2 + 20p4) y-4X9 

+75(-57+ 82p2 -37p4+4p6)y-’X7 

+ 12( 105 - 1 82p2 + 105p4 - 20p6)X5 + 40 - 16p ’1. (2.39) 

The coefficient b2 is well known (Landau and Lifshitz 1975). These equations show 
that the complexity of the barn increases rapidly with the index m. Fortunately, in the 
orbit plane, where for a high energy electron most of the radiation is concentrated, 
we can evaluate the bzm in an  exact way for any index m. This simplification arises 
because the functions A:4,!2m defined in (2.21) satisfy a simple recurrence relation when 
f3 = r / 2 .  In fact from Watson (1952) 

j: C ~ + l ( c o s  cp)(sin dp  

( n  + 2 p  - 2v - 1)( n + 2 p  - 1) 
( 2 v + n + l ) ( n + l )  

- - [: C ~ - , ( c o s  p)(sin p)’” d p  (2.40) 

it follows that 

Using this relation in (2.27) we obtain 
(2m -3)!! 

3(2m -2)!! 
p-2m{21y5-6(3m +2)y3+(2m - 1)(2m +7)y  b 2 m  = 

(2.42) 

(2.43) 

Equation (2.42) is considerably simplified for a high energy electron. In order to 
obtain its high energy form let us consider the quantities H ( m ,  2k - 1). They satisfy 

m - l  (2 r+2k- l ) ! !<m!’  (2r+2k)!! k + m  
H ( m , 2 k - l ) <  = (2k)!! ( k +  

(2r)!! r = ~  (2r)!! 
Thus, when m increases we have the rough estimate H (m, 2k-  1) = O(mk+’), which 
is enough for our purpose. Now by neglecting quantities of order y4 in front of y5, 
we get from (2.42) the following high energy form b;, of the coefficients b2,,, in the 
orbit plane: 

- 7(2m-3)!! 
b m  = Y5. (2.44) (2m -2)!! 

This equation is valid for 3 d m < y. On the other hand, from (2.25) and (2.26) it 
follows that the relativistic value of b2 and b, in the orbit plane are given by b; = 7y5 
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and i 4=7y5 /2 .  These results allow us to study ( S ,  - C) in the orbit plane as a function 
of the distance to the electron orbit. At distances close to the orbit we need a large 
number of terms in the power series (2.24). If t is not too close to 1 ,  it is enough to 
take into account the terms with m < y. Then for a high energy electron we have 

= y + g ( l + : f ’ +  . . .  + (2m - 3 ) ! !  
16 a (2m -2) ! !  

(2.45) 

Let dQ’ be an element of solid angle around the orbit plane with apex at the orbit 
centre; then the corresponding surface element at a distance r is dS=a’c-*dQ‘. 
Therefore the radial energy flux in the orbit plane is given by 

(2.46) 

This formula shows an important dependence of the energy flux with the distance to 
the electron orbit, in contrast with the result obtained from Schott’s formula ( l . l ) ,  
which is &(e2/ a )  y5 ,  irrespective of distance. The standard derivation of Schott’s 
formula ( 1 . 1 )  uses only the asymptotic form of the fields. These far fields fix the a2 
coefficient in (1.4); on the other hand, the factor (1 - , f2)-”2 that appears in (2.46) 
arises from the terms a, with n 3 4. In general, the coefficients a, with n 3 4 make a 
contribution to the energy flux in a given direction, even though the energy flux 
associated with them across the whole surface of a sphere enclosing the electron orbit 
is zero. 

Although the coefficient bzm are positive in the orbit plane for any index m, they 
have a complicated oscillatory behaviour outside this plane, which is a function of the 
electron energy, the angle 0 and the index m. In order to clarify this point, let us 
consider the high energy form of b 2 ,  b4 and b6.  If we introduce the angle ,y measured 
with respect to the orbit plane, i.e. ,y = ~ / 2 -  0, it is easy to see that (2.32) can be 

1 

Figure2. curves related to the radial energy flux in the relativistic limit (-, &; - - -, 
b,; . . , be). 
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written approximately as X = yZ, where 2 is defined by Z = [ 1 + ( y ~ ) ~ ] - ~ ’ ~ .  Then 
from (2.37)-(2.39) we get 

& = y5(-5z2+ 1 2 ) z 5  

6 6 - _  - iys(-3 1 5Z6 + 840Z4-6O0Z2 + 96)Z5. 
b ’ - _  4 -  ~y5(-35Z4+90Z’-48)Z5 (2.47) 

In figure 2 we show the b;, g4 and 6 6  curves without an overall factor proportio?al 
to y s .  The angle ,y is measured in y- l  units. The increasing complexity of the bzm 
with m makes it very difficult to obtain an analytical expression, for angles other than 
0 = ~ / 2 ,  for the radial radiation intensity. 

3. The energy flux in the forward direction 

In this section we study the distance dependence, if there is any, of the energy flux in 
the forward direction and along the tangent to the electron orbit. Our considerations 
will be restricted to the orbit plane (using numerical techniques, Risley et a1 (1982) 
have studied the forward energy flux around the orbit plane). Let i be the unit vector 
into the tangential direction to the electron orbit, as shown in figure 1. Then we have 

i= i sin cp + 4 cos cp (3.1) 

where 4 is the unit vector (-sin cp, cos cp, 0). In  particular, the time integrated energy 
flux in the forward direction is given by 

(s, * i) = (s, i )  sin cp + (s, + 4) cos cp. (3.2) 

As we have already calculated (SI * i) in (2.45), it remains to specify ( S ,  * 4). Now 
from (2.8) it follows that 

K4p2 K 3 p 2  

(3.3) 

Therefore, the time integrated energy flux (SI 4) can be expressed in powers of the 
5 parameter, with coefficients which are combinations of the By;q’ functions defined 
in equation (2.22). From (3.3) we get 

(3.4) 

and in general for m 2 2 
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In the orbit plane the coefficients (3 .5)  and (3.6) are very simple. In fact, using the 
recurrence relation (2.41), we find that they are given by 

which, unlike the coefficients of the power series associated with (SI * f ) ,  are indepen- 
dent of the index m. From (3 .7)  we get the following exact result for (SI - 6 )  in the 
orbit plane: 

which for a high energy electron is reduced to 

Introducing this result, together with the value of (SI * f )  given by (2.45) in equation 
(3.2), and using the fact that cos q = 5, we obtain 

(3.10) 

The surface element in the slit, around the orbit plane, can be written as d S =  
a’t-’( 1 - 5’) dR, where dR is the solid angle associated with the surface element d S  
as is seen from the tangential point. Then, from equation (3.10) it follows that the 
forward energy flux in the orbit plane is 

( 3 . 1 1 )  

Therefore, when the radiation is measured along the tangent to the orbit we get the 
value 7e2 y 5 /  16a irrespective of distance. This distance independence of the radiation 
intensity along the tangent deserves some comments. For detection near the tangential 
point, the element of solid angle dR must be defined in a precise way. In this case 
the exact location of the tangential point turns out to be very important, but this is 
not an easy matter because the orbit looks like a straight line for observation close to 
it. Besides, the formula a2t-’(  1 - 5’) dR for the surface element is inaccurate in the 
neighbourhood of the tangential point. A more fundamental difficulty is associated 
with the process of radiation detection itself. In fact, if the detector is brought near 
the tangential point along the tangent, the angle 6a that defines the angular width of 
the detector in the horizontal direction, i.e. in the orbit plane, is bisected by the tangent 
to the orbit. Therefore, the electron beam will collide with the detector, before it 
reaches the tangential point. 

The above difficulties do not appear for detection in the radial direction, where we 
can, at least in principle, measure the radiation at arbitrary small distances from the 
electron orbit. In this case, according to (2.46), the radiation intensity differs consider- 
ably from the value obtained at large distances. In order to appreciate this effect let 
us consider, for instance, the case when the orbit radius is 1 m. Then if we detect 
radiation at 5 mm from the orbit, we have 6 = 0.995, i.e. t2 = 0.99. For this value of 
t2, equation (2.46) shows that the radiation intensity is one order of magnitude higher 
than 7e2y5/16a. At such distances it is easy to justify the validity of (2.46) for electron 
energies above 500 MeV. Indeed, in the power series representation of ( S ,  . i )  we are 
considering close to one thousand terms and for t2 = 0.99 we have (.$2)1000- With 
the aim of getting a more detailed information about this effect, we will analyse the 
distance dependence of dZ/dn‘  outside the orbit plane in the next section. 
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2 J  

4. The energy flux outside the orbit plane 

__--- --------- 

Due to the complicated oscillatory behaviour of the coefficients b2,,, outside the orbit 
plane, the treatment of (SI - i )  by means of a power series in the parameter 6 is hopeless 
in this case. For this reason we will use numerical techniques for computing ( S ,  * E) 
outside the orbit plane. With the purpose of avoiding the spurious terms, with powers 
higher than y’, that appear in the computation of the functions F‘5*4’ defined by (2.15), 
it is convenient to rearrange the terms involved in equation (2.13), writing 

---L -______ 

d l  -= (s, i ) r 2  
dR’ 

as follows: 

d l  7 e’ 
dR’ 16 a 
- = - (-) 

(4.1) 

(4.2) 

with 
( 1  - 6 sin 8 cos x)  dx 

K 3 p 3  

(4.3) 
2rr (sin 8 cos x - 6)’( 1 - 6 sin 8 cos x)  dx 

- Y - 2  I, K ’ p ’  

Numerical analysis of the integrands of (4.3) shows that, for a high energy electron, 
they are important only in a small neighbourhood of the point cos x = 6 and sin x = 
-( 1 - [2)1’2. The piece of the orbit, around this point, that contributes significantly to 
the integrals depends on the parameters 6, /.3 and 8. However, the length of this 
neighbourhood changes only a little with 5, if 6 is not too close to one, as happens 
for the curves drawn in figure 3. This fact can be used in order to obtain an approximate 
analytical expression for the integral of (4.3). We will not pursue this procedure here. 
Instead, we perform numerical integration using a Monte Carlo program VEGAS (Lepage 
1978), which can handle integrals like the ones that appear in equation (4.3) very well. 

T X  

Figure3. Plots of the radial intensity of radiation as a function of the elevation angle ,y 
measured in y-’  units for three different distances from the electron orbit. These curves 
show in a clear way the focusing effect of the radiation in the orbit plane, as we move 
closer to the electron orbit. 
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Figure 3 shows some plots of the amplitude A for different values of the distance 
to the electron orbit. The broadest curve corresponds to 6 = 0  and represents the 
standard Schott result; the others are associated with the values 6 = 0.9798 and 6 = 
0.99499. The energy of the electron is the same for the three curves and has a value 
of 500 MeV. The angle x is measured with respect to the orbit plane, i.e. x = 77/2 - 8. 

Figure 3 shows a combination of two effects as we approach the electron orbit. 
Together with an increase of the radiation intensity, the angular spread of the radiation 
decreases. This focusing of the radiation in the orbit plane can be understood starting 
from equation (2.46) and using conservation of energy. Due to the fact that the SI 
piece of the Poynting vector satisfies equation (2.1) (Teitelboim et a1 1980), it can be 
shown, following the same procedure for obtaining (2 .5 ) ,  that the coefficients b,,  of 
(2.24) have the property 

b,,  sin 6 d6 d p  = 0 (4.4) 

for m 3 2. Therefore, for r > a (but otherwise arbitrary), we have 

where we have used (2.37) for a high energy electron. Now, introducing in (4.5) the 
expression (4.2) we obtain 

Thus, independently of the value of 6, the area under the curves of figure 3 must be 
the same. The focusing effect then follows from the fact that in the orbit plane the 
intensity of radiation increases as we approach the electron orbit, as is shown by 
equation (2.46). Numerical calculations show that for an electron of 500MeV, the 
increasing behaviour (1 - [2)-"2 given in equation (2.46) is appropriate even for values 
of 6 as close to one as 1 - 6 = lop6. For an idealised source of one monoenergetic 
electron in circular orbit, the focusing of the radiation in the orbit plane becomes a 
remarkable effect. Thus for a detector located almost touching the electron orbit, all 
the emitted radiation tends to be concentrated into a line, producing a very high density 
of energy per unit area. 

Equation (4.6) can be written in a more compact way in terms of a new variable 
t defined by ,y = t y - ' .  In fact we have 

lom A ( y ,  t y - ' ,  6) dt  =g.  (4.7) 

More detailed information about the amplitude A that appears in this equation, as a 
function of the electron energy and the distance to the orbit, will be considered in a 
further paper. 

In real machines the electron beam has a finite size, which certainly plays an 
important role for detection near the orbit. Starting from the incoherence of synchrotron 
radiation, we also expect an important dependence on the distance for the intensity 
of radiation in a real machine. It is rather obvious, however, that the finite size of the 
beam will prevent the focusing of the radiation into a line, as happens in the case of 
one electron. It seems clear that the increase of the intensity and focusing of the 
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radiation, obtained when we approach the orbit, will be more significant for machines 
with small beam size. In any case, in order to have a very high intensity of radiation, 
it would be sufficient that the electron beam has a small cross section only in a tiny 
arc of the orbit located in the vicinity of the detector. 

Here, we will not attempt to give a quantitative description of the influence of the 
beam size on the radiation intensity. The treatment of the effect of the beam size on 
the radiation is a very delicate matter, especially for detection near the orbit. Besides 
the complications for determining the cross section of the beam (Tomboulian and 
Hartman 1956, Codling and Madden 1965), there are questions about the distribution 
of the electrons in the orbit. Other important sources of difficulties are those associated 
with the coherence of the radiation near the orbit and the ones due to the oscillations 
of the electrons in their orbits. We hope to deal with these matters in the near future. 
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